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Introduction: 
We worked with an Electronic Health Records (EHR) dataset to predict if a patient will return to 
the Emergency Room (ER) within 72 hours of discharge from the hospital. A return within 72 
hours of discharge suggests that the patient should probably not have been discharged. 
Therefore, because new admissions are costly -- both in terms of finances and other resources 
(hospital beds, etc.) --  it would be useful for hospitals to be able to predict whether a patient is 
likely to return to the ER within 72 hours when considering discharging the patient. In our 
dataset, there are a total of 71,283 patients who returned to the ER within 72 hours of 
discharge.  
 
Data and features 
We use the ​STRIDE-7 ​dataset, which includes patient EHR data from Stanford Hospital Center 
(SHC) and Lucile Packard Children Hospital (LPCH). We only use data from SHC, since we are 
mostly interested in predicting 72-hour readmissions amongst an adult population.  
 
Each patient’s EHR data consists of a set of chronological visits to the hospital, where the 
following data is collected: medication codes, procedure codes , and diagnostic codes. We used 
EHR codes to create a set of features. 
 
We created our labeled dataset consisting of visits with a discharge time that were either 
followed by another visit to the ER within 72 hours (label = 1), or visits with discharge time that 
were not followed by another visit to the ER within 72 hours (label = 0). Since there were far 
more negative labels than positive labels, we included 9​ ​negative examples (i.e., instances in 
which a patient did not return to the ER within 72 hours of discharge) for each positive example. 
 
Baseline models 
We created three baseline models: a logistic regression model, an SVM, and a multilayer 
perceptron.  
 
Data 
To fit these models, we extracted EHR data from the past 6 months prior to each visit. We did 
not use a patient’s full history as we thought it was likely to be noisy in terms of predicting an 
outcome within a short time frame (i.e., 72 hours). We then created a sparse set of features 
consisting of the number of counts of each code (i.e., medical diagnosis and procedure codes) 
in the 12 months prior to the ER visit. See the table below for a representation of our data in all 
baseline models. 
 
 
 
 

 



Table 1: Data format for baseline models 

patient_id visit_id label Code 1 Code 2 ... Code N 

111 1 1 0 3  0 

111 2 0 0 0  1 

222 1 1 0 0  0 

 
Following the steps in [2], we pruned away features (i.e., codes) that occurred in less than 100 
patients, to prevent an exploding number of features, and ended up with ~1000 features. We 
used a 80-20 training-test split to fit our models. 
 
Preprocessing 
For the Logistic Regression and SVM, we reduced the feature space using PCA after center 
and scaling. All baseline models were trained with the PCA transformed data. We left the 
number of components to keep in the subsequent models as a hyperparameter. 
 
Logistic Regression 
For the logistic regression model, we used L2 regularization and used 3-fold cross-validation on 
the training set to select the number of PCA components to keep as well as the L2 
regularization parameter. We used F1 score as the cross-validation metric in all our models 
since accuracy is not informative when classes are unbalanced. Furthermore, both precision 
and recall should be balanced for our application. The training F1 score was 0.47 and the test 
F1 score was 0.48.  
 
SVM 
Our second baseline model in an SVM with a radial basis function kernel. Hyperparameters for 
the SVM model were similar to the ones for logistic regression; we used the default value of 
1/n_feature for the Rbf kernel parameter. The model never predicted that a patient would return 
within 72 hours, thus training and test F1 scores are both 0, and test accuracy is the proportion 
of negative examples in the test set (.88). SVM’s can perform poorly with unbalanced classes, 

and our model likely would have 
performed better if we had used a 
weighted loss.  
 
Dense model 
Our final baseline model was a 
fully-connected neural net (which we 
called our “dense” model). We tuned our 
model with a ReLU at each hidden layer 
and a Sigmoid at the output layer, a 
learning rate of 0.001, an Adam optimizer, 

a batch size of 512, and an optimized L2 regularization. We also 

 



experimented with different numbers of layers (from 2 - 6 layers) and neurons in each layer 
(from 5 - 512), and found our best “dense” model had 4 layers with configuration of [50, 25, 10, 
5] neurons in layers [1, 2, 3, 4] respectively. Our optimal “dense” model had an F1 score of 0.56 
on positive examples and an accuracy of 0.91. 
 
RNN 
While dense models ignore the sequential nature of EHR 
data, Recurrent Neural Networks should be able to learn 
temporal patterns. We therefore implemented an RNN 
architecture in Tensorflow to test whether temporal 
information could help prediction. 
 
Data extraction and preprocessing 
For every visit in our dataset, EHR codes from the previous 
6 months before discharge were extracted and sorted 
chronologically. Examples were split 80:10:10 into 
train:dev:test sets. Codes that were too common 
(appearing more than 150,000 times in the dataset) were 
filtered out with the idea that they would act as “Stop 
words.” We kept the next 10,000 most common codes. 
Although RNN can take as input a code sequence of an 
arbitrary length, we were limited by our access to 
computing power and therefore had to cap the length of the 
code sequence. The maximum code sequence length ​max_length​ was left as a 
hyperparameter. At run time, each code sequence was either clipped or zero-padded to the 
fixed ​max_length​ length. Each code was then encoded as a 10,000 dimensional one-hot vector 
before being fed to the network. Fig. 2 provides an example of the data encoding and 
processing steps. 

 
Model architecture: 
Our model is composed of a fully connected layer followed by 
an RNN and then an output layer. The role of the first fully 
connected layer is to embed the sparse one-hot vector into a 
smaller feature space in order to facilitate learning of the RNN. 
The hidden state of the RNN on the last time-step 
corresponding to a code (and not a 0 from sequence padding) 
was used as input for the last layer, which implements a 
sigmoid activation function (Fig. 3). To fight class imbalance, 
we used a weighted logistic loss with a tunable 
positive_weight​ parameter.  The loss was minimized with an 
Adam optimizer and the model trained for a maximum of 50 
epochs. After every epoch, the model was evaluated against 

 



the dev set and the model with best F1 score against the dev set was saved.  
 
 
Hyperparameter tuning 
Out of all the possible hyperparameters to tune, the most important ones for our models were 
the learning rate and the weight for positive examples in the loss. Additionally, we tuned the 
maximum code sequence length, the embedding size of the fully-connected layer, the type of 
RNN cell and size of its hidden state. Because 
of time and computing limitation, we could not 
try code sequences longer than 500 codes 
and had to downsample our dataset to 5000 
examples during hyperparameter tuning. 
Table 2 lists the different hyperparameter 
values that were tested and figure 4 displays 
3 metrics from the trained models. Once the 
best hyperparameter values were established, 
the model was retrained on the full dataset 
(~150,000 examples). 
 
 
Table 2: Hyperparameters tested - value for the best 
model are in bold. 

learning 
rate hidden_size feature_size max_length model pos_weight 

0.1 10 100 10 gru 1.5 

0.001 50 500 50 rnn 5 

 100 1000 100 multi_gru 7 

   500  10 

Model comparisons 
The 3 best RNNs, the best dense 
model as well as the SVM and 
logistic regression were evaluated 
against the test set and their 
accuracy, precision, recall and F1 
score are reported in figure 5. The 
dense model (“mlp” in the figure) 
and the GRU1 and GRU 3 perform 

 



similarly and tie for best models depending on the desired trade off between precision and 
recall.  
 
 
 
 
Conclusions 
We tried to predict admission to the ER within 72h of hospital discharge using EHR data. We 
compared traditional ML classifiers (SVM, logistic regression) with two different deep-learning 
architecture (dense models and RNN). The neural networks were more expressive and yielded 
better F1 score than the traditional models. Furthermore, RNNs are doing as good as the dense 
model with less data (50 codes vs. 6 months worth of EHR codes). However, precision and 
recall are still too low to make the models useful in the hospital setting. 
 
Future work 
We consider a few areas for future work. First, it would likely improve our results to reduce the 
dimensionality of our features by learning efficient representations of medical concepts, as 
demonstrated in [5]. Second, we could incorporate lab tests and their results. We currently only 
use medication, procedure, and diagnosis codes as features, but our data also includes lab 
data. To counteract the variance problem in our RNNs (overfitting of the training data after 10 
epochs), we could use more training data, increase L2 regularization, or try dropout. Finally, the 
fact the RNNs do as well as dense models with much less data suggests that the RNNs would 
outperform the dense model if given access to a similar amount of data. Therefore, we would try 
to train RNN models on longer code sequences. 
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