
Title: Predicting Emergency Room (ER) Readmissions within 72 Hours of Discharge
Authors: Hershel Mehta, Maeva Fincker, Sara Altman

Introduction:
We worked with an Electronic Health Records (EHR) dataset to predict if a patient will return to
the Emergency Room (ER) within 72 hours of discharge from the hospital. A return within 72
hours of discharge suggests that the patient should probably not have been discharged.
Therefore, because new admissions are costly -- both in terms of finances and other resources
(hospital beds, etc.) -- it would be useful for hospitals to be able to predict whether a patient is
likely to return to the ER within 72 hours when considering discharging the patient. In our
dataset, there are a total of 71,283 patients who returned to the ER within 72 hours of
discharge.

Data and features
We use the STRIDE-7 dataset, which includes patient EHR data from Stanford Hospital Center
(SHC) and Lucile Packard Children Hospital (LPCH). We only use data from SHC, since we are
mostly interested in predicting 72-hour readmissions amongst an adult population.

Each patient’s EHR data consists of a set of chronological visits to the hospital, where the
following data is collected: medication codes, procedure codes , and diagnostic codes. We used
EHR codes to create a set of features.

We created our labeled dataset consisting of visits with a discharge time that were either
followed by another visit to the ER within 72 hours (label = 1), or visits with discharge time that
were not followed by another visit to the ER within 72 hours (label = 0). Since there were far
more negative labels than positive labels, we included 9 negative examples (i.e., instances in
which a patient did not return to the ER within 72 hours of discharge) for each positive example.

Baseline models
We created three baseline models: a logistic regression model, an SVM, and a multilayer
perceptron.

Data
To fit these models, we extracted EHR data from the past 6 months prior to each visit. We did
not use a patient’s full history as we thought it was likely to be noisy in terms of predicting an
outcome within a short time frame (i.e., 72 hours). We then created a sparse set of features
consisting of the number of counts of each code (i.e., medical diagnosis and procedure codes)
in the 12 months prior to the ER visit. See the table below for a representation of our data in all
baseline models.

Table 1: Data format for baseline models

patient_id visit_id label Code 1 Code 2 ... Code N

111 1 1 0 3 0

111 2 0 0 0 1

222 1 1 0 0 0

Following the steps in [2], we pruned away features (i.e., codes) that occurred in less than 100
patients, to prevent an exploding number of features, and ended up with ~1000 features. We
used a 80-20 training-test split to fit our models.

Preprocessing
For the Logistic Regression and SVM, we reduced the feature space using PCA after center
and scaling. All baseline models were trained with the PCA transformed data. We left the
number of components to keep in the subsequent models as a hyperparameter.

Logistic Regression
For the logistic regression model, we used L2 regularization and used 3-fold cross-validation on
the training set to select the number of PCA components to keep as well as the L2
regularization parameter. We used F1 score as the cross-validation metric in all our models
since accuracy is not informative when classes are unbalanced. Furthermore, both precision
and recall should be balanced for our application. The training F1 score was 0.47 and the test
F1 score was 0.48.

SVM
Our second baseline model in an SVM with a radial basis function kernel. Hyperparameters for
the SVM model were similar to the ones for logistic regression; we used the default value of
1/n_feature for the Rbf kernel parameter. The model never predicted that a patient would return
within 72 hours, thus training and test F1 scores are both 0, and test accuracy is the proportion
of negative examples in the test set (.88). SVM’s can perform poorly with unbalanced classes,

and our model likely would have
performed better if we had used a
weighted loss.

Dense model
Our final baseline model was a
fully-connected neural net (which we
called our “dense” model). We tuned our
model with a ReLU at each hidden layer
and a Sigmoid at the output layer, a
learning rate of 0.001, an Adam optimizer,

a batch size of 512, and an optimized L2 regularization. We also

experimented with different numbers of layers (from 2 - 6 layers) and neurons in each layer
(from 5 - 512), and found our best “dense” model had 4 layers with configuration of [50, 25, 10,
5] neurons in layers [1, 2, 3, 4] respectively. Our optimal “dense” model had an F1 score of 0.56
on positive examples and an accuracy of 0.91.

RNN
While dense models ignore the sequential nature of EHR
data, Recurrent Neural Networks should be able to learn
temporal patterns. We therefore implemented an RNN
architecture in Tensorflow to test whether temporal
information could help prediction.

Data extraction and preprocessing
For every visit in our dataset, EHR codes from the previous
6 months before discharge were extracted and sorted
chronologically. Examples were split 80:10:10 into
train:dev:test sets. Codes that were too common
(appearing more than 150,000 times in the dataset) were
filtered out with the idea that they would act as “Stop
words.” We kept the next 10,000 most common codes.
Although RNN can take as input a code sequence of an
arbitrary length, we were limited by our access to
computing power and therefore had to cap the length of the
code sequence. The maximum code sequence length max_length was left as a
hyperparameter. At run time, each code sequence was either clipped or zero-padded to the
fixed max_length length. Each code was then encoded as a 10,000 dimensional one-hot vector
before being fed to the network. Fig. 2 provides an example of the data encoding and
processing steps.

Model architecture:
Our model is composed of a fully connected layer followed by
an RNN and then an output layer. The role of the first fully
connected layer is to embed the sparse one-hot vector into a
smaller feature space in order to facilitate learning of the RNN.
The hidden state of the RNN on the last time-step
corresponding to a code (and not a 0 from sequence padding)
was used as input for the last layer, which implements a
sigmoid activation function (Fig. 3). To fight class imbalance,
we used a weighted logistic loss with a tunable
positive_weight parameter. The loss was minimized with an
Adam optimizer and the model trained for a maximum of 50
epochs. After every epoch, the model was evaluated against

the dev set and the model with best F1 score against the dev set was saved.

Hyperparameter tuning
Out of all the possible hyperparameters to tune, the most important ones for our models were
the learning rate and the weight for positive examples in the loss. Additionally, we tuned the
maximum code sequence length, the embedding size of the fully-connected layer, the type of
RNN cell and size of its hidden state. Because
of time and computing limitation, we could not
try code sequences longer than 500 codes
and had to downsample our dataset to 5000
examples during hyperparameter tuning.
Table 2 lists the different hyperparameter
values that were tested and figure 4 displays
3 metrics from the trained models. Once the
best hyperparameter values were established,
the model was retrained on the full dataset
(~150,000 examples).

Table 2: Hyperparameters tested - value for the best
model are in bold.

learning
rate hidden_size feature_size max_length model pos_weight

0.1 10 100 10 gru 1.5

0.001 50 500 50 rnn 5

 100 1000 100 multi_gru 7

 500 10

Model comparisons
The 3 best RNNs, the best dense
model as well as the SVM and
logistic regression were evaluated
against the test set and their
accuracy, precision, recall and F1
score are reported in figure 5. The
dense model (“mlp” in the figure)
and the GRU1 and GRU 3 perform

similarly and tie for best models depending on the desired trade off between precision and
recall.

Conclusions
We tried to predict admission to the ER within 72h of hospital discharge using EHR data. We
compared traditional ML classifiers (SVM, logistic regression) with two different deep-learning
architecture (dense models and RNN). The neural networks were more expressive and yielded
better F1 score than the traditional models. Furthermore, RNNs are doing as good as the dense
model with less data (50 codes vs. 6 months worth of EHR codes). However, precision and
recall are still too low to make the models useful in the hospital setting.

Future work
We consider a few areas for future work. First, it would likely improve our results to reduce the
dimensionality of our features by learning efficient representations of medical concepts, as
demonstrated in [5]. Second, we could incorporate lab tests and their results. We currently only
use medication, procedure, and diagnosis codes as features, but our data also includes lab
data. To counteract the variance problem in our RNNs (overfitting of the training data after 10
epochs), we could use more training data, increase L2 regularization, or try dropout. Finally, the
fact the RNNs do as well as dense models with much less data suggests that the RNNs would
outperform the dense model if given access to a similar amount of data. Therefore, we would try
to train RNN models on longer code sequences.

Citations
[1] Clinical Classifications Software (CCS) for ICD-9-CM. Agency for Healthcare Research and
Quality. https://www.hcup-us.ahrq.gov/tools software/ccs/ccs.jsp. Accessed February 2018.

[2] Improving Palliative Care with Deep Learning. (2017). Avati et al. arXiv: 1711.06402.

[3] Using recurrent neural network models for early detection of heart failure onset. (2017). Choi
E, Schuetz A, Stewart WF, Sun J. J Am Med Inform Assoc. 24(2):361–70

[4] Choi E, Bahadori MT, Searles E, Coffey C, Thompson M, et al. 2016. Multi-layer
Representation Learning for Medical Concepts. Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. 1495-1504

Code Repo

https://github.com/mfincker/ehr_deeplearning

Contribution
Hershel:

Data processing: extracting codes from stride7, creating sparse feature matrix,
Dense model architecture

Maeva:

Data preprocessing: defining labels / aggregation for dense model
RNN: data formatting / implementation / training / evaluation

Sara:
SVM / Logistic regression baseline
Feature engineering (Med2Vec)

https://arxiv.org/abs/1711.06402
https://arxiv.org/abs/1711.06402
https://github.com/mfincker/ehr_deeplearning

