
Predicting prokaryotic incubation times from genomic features
Maeva Fincker - mfincker@stanford.edu

Final report

Introduction
We have barely scratched the surface when it comes to microbial diversity. For every
microorganism we can culture and study in lab, there exist at least another 50 in the
environment that are labelled “uncultivable”. Although most of these uncultivable strains resist
growing under laboratory conditions, recent advances in DNA sequencing has given us access
to their genome. One of the main questions that bioinformatics in the field of microbiology is
trying to answer is the following: how can we infer function from genomic information without
access to experimental validation?[1] This project focuses on the prediction of microbial
growth rate (how fast can a microorganism divide) from genomic information. More
specifically, counts of specific genomic features encoding microbial functions are extracted from
annotated microbial genomes for which the incubation time in known. These features are then
used as input variables for thee different classifiers (softmax classification, SVM and random
forest) whose role is to find the most probable label among 6 classes (representing different
incubation times).

Previous work
Literature review did not reveal many example of using machine learning tools to predict
physiological characteristics at the level of an microorganism from genomic features. Lauro et
al. used self-organizing map to cluster microorganisms based on genomic features and relate
the cluster to types of metabolism.[2] Roller et al. showed that the number of 16S rRNA operon
correlates with growth rate and used it for supervised regression to predict bacterial
reproductive strategy. Their results, that growth rate use be dictated by metabolic functions, are
the basis for this project. [3]

Datasets & Feature selection
The growth rate of a microorganism describes how long it takes
for a cell to divide. When a new organism is isolated,
microbiologists report growth rates in various ways, which make
direct comparisons difficult, if they even measure such a
physiological trait at all. Since mining scientific literature for
growth rates values could be a machine learning project on its
own that I did not wish to tackle, I decided to use incubation
time as a proxy for growth rate. Incubation times are reported
by strain collections and represent how long approximately one
has to wait to observe full growth of a microbe. The BacDive
database [4] contains the incubation times of 2312
microorganisms in 6 different bins of time: 1-2 days, 2-3 days,
3-7 days, 8-14 days, 10-14 days and > 14 days. Out of these
2312 organisms, 783 have a complete genome (or ordered
scaffold genome assembly) available on NCBI [5] but only 596
of these genomes have been properly annotated. Therefore,
my dataset is composed of 596 genomes and their

�1

224

102

81

27

144

18
0

50

100

150

200

1−2 2−3 3−7 8−14 10−14 >14
incubation time (days)

co
un

t

Fig. 1: histogram of the labels in the dataset

associated incubation time. Figure 1 shows the histogram of the labels of my 596 examples.
Classes are very unbalanced, with an over representation of class 1-2 and 10-14 days.
Given the hypothesis that incubation time is dictated by metabolic capabilities and functions, I
focused on extracting metabolically-relevant features from the genomes: counts of proteins
belonging to each pFam families, length of the genome and number of 16S rRNA operons. The
Pfam families are clusters of homolog proteins sharing a similar function. Extraction pFam
counts yielded a total of 14618 features, which was too large a number of features when I only
had access to 596 genomes. Keeping only Pfam features that appear in at least 3 genomes
lowered the total number of features to 7549.
Proteins from more than one pFam cluster can be responsible for the same metabolic function,
making my dataset highly redundant. In order to further decrease the number of feature, I used
a feature selection algorithm called Fast Correlation-Based Filter (fcbf) [6]. This algorithm uses
symmetrical uncertainty (SU) of two variables as a measure of their correlation. Given two
variables X and Y, SU is defined as two times the ratio of information gain of X given Y, over the
sum of their entropy. It first computes the SU between each variable and the label over the
dataset. Keeping only features whose SU with respect to the labels are above a threshold d, the
algorithm then consider a pair of features and calculates their SU with respect to each other. If
the SU between these two features is higher than the SU between either of them and the label
(meaning they are more correlated to each other than to the label), the feature with the lowest
SU with respect to the label is removed from the dataset. The algorithm loops over pairs of
features until all remaining features have a higher SU with respect to the label than to each
other. Using a threshold d of 0 (which means keeping all non redundant features that correlates
with the labels), the Fast Correlation-Based Filter selected 120 features.
Classifier building and selection were therefore carried out on two datasets of 596
examples each: the full dataset contained 7549 features and the filtered “fcbf
dataset“contained 120 features. Both datasets were scaled (s.d. 1), centered (mean 0)
and BoxCox transformed to correct for skewness for downstream applications. The
datasets were divided between training set (537 examples, 90%) and a test set (59
examples, 10%).

Methods
I built and compared 3 different classifiers: softmax classification with L1-regularization, one
vs. one SVM with RBF kernel, and random forest.
Softmax classification:
In softmax regression, the hypothesis (for a
problem with K classes) takes the following form:

And the likelihood function to maximize is:
There is no close form for the maximum
likelihood estimates and I used batch gradient descent to find them. Since I had a large number
of features, I also tried adding a L1 regularization term to the likelihood function such that the
function to maximize becomes:

�2

l(✓)⇤ = l(✓) + C||✓||1

1

The L1 regularization term brings down to zero the weights of unimportant variables, thereby
effectively selecting features of importance. The model was fitted to both the full and the filtered
training set and the best value for C for each dataset was selected via 10-fold cross-validation
one the training set. Finally, the models were evaluated on the test set.
SVM classification:
SVMs are linear classifiers that use the hinge loss. They enable the use of kernels to separate
data in a high-dimensional space that is not necessarily linearly separable in its own space.
Using the RBF kernel, the loss function to minimize is:

with the matrix being defined as and
.

The 2 model hyperparameters to optimize are therefore a n d .
SVMs are inherently 2-classes classifiers. In order to use them for J-class problem, one
can either train J one vs. all SVM or J(J-1) one vs. one SVMs. Since my classes were
extremely unbalanced, I decided to use one vs. one SVMs as it would decrease the impact of
having very large and very small classes. Furthermore, I weighted each example depending on
their label: examples from overrepresented classes had a small weight whereas examples from
underrepresented classes had a large one (weights: “1-2" = 0.5, “2-3" = 1, “3-7" = 1.2, “8-14" =
3.4, “10-14" = 0.7, ">14" = 5.7). As for softmax regression, the model was fitted using both the
full and the filtered dataset. The best values for lambda and gamma were selected with 10-fold
cross-validation on the training set and the models with the best parameters were retrained on
the full data-set before being evaluated on the test set.
Random forest
Random forest classifiers build a collection of ntree decision trees, each tree being computed
over a subset of nex samples, sampled with replacement from the training set. For each tree, at
each decision split, a random subset of mtry features is selected and the decision split only
decided over this subset. At each split, the best feature and decision threshold to split upon is
the feature that minimizes the Gini index.
The Gini index IG is measure how often an example would be mislabeled
under a certain probability (with fi = p(y = i)).
I trained random forest classifiers on both the full and filtered training set
and tried to optimize the number mtry of features selected at each split. I used the
randomForest package in R to fit random forest models.

Because the classes in my dataset were very unbalanced, accuracy was not a good measure of
learning. Instead, I used a definition of precision and recall generalized to multi-class to optimize
the hyperparameters:

�3

l(✓)⇤ = l(✓) + C||✓||1

P =

P
j
number of properly classified examples from class j

number of examples classified in class j

J

R =

P
j
number of properly classified examples from class j

number of examples that are truly in class j

J

�

1

l(✓)⇤ = l(✓) + C||✓||1

P =

P
j
number of properly classified examples from class j

number of examples classified in class j

J

R =

P
j
number of properly classified examples from class j

number of examples that are truly in class j

J

�

1

Results
Softmax regression
The softmax regression model was fitted using batch
gradient descent with batches of 100 examples for 100
iteration with a learning parameter of 0.05. Better precision
and recall were obtained with the filtered dataset,
indicating probably overfitting of the model to unimportant
features in the full dataset.
The L1 regularization hyper parameter was optimized
using 10-fold cross-validation (CV) on the training set.
Mean precision and recall of the CV are presented in figure
2. Best performances were achieved with a L1 parameter of
0.6 and evaluation on the filtered test set showed a
precision of 0.43 and a recall of 0.44.

SVM

A first attempt at implementing one vs. all SVMs for this classification problem did not yield any
useful result because of the imbalance of classes. Therefore, a one vs. one SVM classification
approach was employed. All model fitting were carried out using batch gradient descent
(batches of 100 examples, annealed learning rate of 1/sqrt(t) for 40*m iteration). I first tested the
influence of weights on the model using gamma = 1/num features, and cost = 1 (fig. 3). Using
weights improved precision and recall by 6-10% on both the filtered and full dataset. The best
cost value for the full dataset was 100 and 1200 for the filtered dataset. Optimization of RBF
gamma yielded the following values: 0.035 for the filtered dataset, and 0.00013 for the full
dataset. Evaluation on the test set showed that the best model had a precision and recall of
0.48 and 0.48 for the full dataset, and of 0.52 and 0.46 for the filtered dataset.

�4

0.20

0.25

0.30

0.35

0.40

0.1 0.2 0.3 0.4
precision

re
ca

ll

L1 cost:
0
0.001
0.1
0.3
0.6
1
10
1000
2
3
4
8

feature selection
fcbf
none

Precision − recall of softmax classification
with L1 regularization

0.20

0.25

0.30

0.35

0.40

0.1 0.2 0.3 0.4
precision

re
ca

ll

L1 cost:
0
0.001
0.1
0.3
0.6
1
10
1000
2
3
4
8

feature selection
fcbf
none

Precision − recall of softmax classification
with L1 regularization

Fig. 2: Softmax classification
10-fold CV of the hyper parameter

over the training set

0.36

0.39

0.42

0.45

0.48

0.30 0.35 0.40 0.45
precision

re
ca

ll

weighted
no
yes

feature selection
none
fcbf

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5
precision

re
ca
ll

cost
0.001
0.01
0.1
1
10
100
1000
10000
1200
1400
1e−04
600
800

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5
precision

re
ca
ll

gamma
0.000111111111111111
0.000125
0.00013271400132714
0.000142857142857143
0.001
0.01
0.0357142857142857
0.1
1
10
100
1000
10000
1e−04
2e−04

0.36

0.39

0.42

0.45

0.48

0.30 0.35 0.40 0.45
precision

re
ca

ll

weighted
no
yes

feature selection
none
fcbf

0.36

0.39

0.42

0.45

0.48

0.30 0.35 0.40 0.45
precision

re
ca

ll

weighted
no
yes

feature selection
none
fcbf Fig. 3: Precision and recall during SVM hyper parameters optimization

A: influence of weights on SVM, B: CV of the cost on the training set, C: CV of RBF gamma on
the training set (values in B and C are mean precision and recall during CV)

A B C

 
Random Forest
I trained random forest models with 2500 trees and variable
number of features subsampled at each split. Optimization of
the number of features for split decision yielded different
results for the full and filtered dataset: 20 features worked
best for the filtered dataset, whereas 5 features were better
for the full dataset. The best random forest model yielded a
precision of 0.48 and recall of 0.47 with the filtered dataset
(fig. 4).

Model comparison and PCA
All three models performed better with the filtered
dataset but did not have vastly different
classification powers, as the comparison of
confusion matrix shows in figure X. All classifiers
were able to classify fast and slow growing
organisms (class 0: 1-2 and class 4: 10-14 days)
relatively well but were not able to resolve
medium growth-rate (classes 2, 3) or extremely
slow organisms (class 5).
PCA of the dataset shows a clear chasm between
slow an fast growing organisms (class 0 and class
4). However, Fast growing organisms overlap with
medium-fast organisms on the plot, which might
explain the difficulty for the classifiers to properly
classify them.

Conclusion
This project focused on predicting microbial
incubation times from genomic features. All
classifiers trained yielded precision and recall
values in the 0.4 - 0.5 range, indicating that no
model was vastly superior. The classifiers were
able to classify well fast and slow growing
organisms but not the organisms whose
incubation are in between (or extremely long).
This lack of predictive power can be explained by
the imbalance of classes, the small number of
examples compared the number of features or,
more likely, a lack of knowledge of the optimum
growth condition for the organisms. Under optimal
growth condition, it is possible that the organisms
in class 2 and 3 would actually grow faster and
would fall in class 0.

�5

−25

0

25

50

75

−40 0 40 80
PC1

PC
2

Incubation time (days): 1−2
2−3

3−7
8−14

10−14
>14

0.35

0.40

0.45

0.3 0.4
precision

re
ca

ll

Number of variable
sampled

1
5
10
20

Feature selection
none
fcbf

Fig. 4: Random forest model - Precision and
recall during optimization of the number of

subsampled features

A

B

Fig. 5: Confusion matrices from the best models (A),
plot of the first two components of PCA over the full

dataset (B)

References:
1. Libbrecht MW, Noble WS. 2015. Machine learning applications in genetics and genomics. Nature
Reviews Genetics. 16(6):321–32
2. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, et al. 2009. The genomic basis of
trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. U.S.A. 106(37):15527–33
3. Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate
bacterial reproductive strategies. Nature Microbiology. 1:16160EP
4. Söhngen C, Bunk B, Podstawka A, Gleim D. 2013. BacDive—the Bacterial Diversity
Metadatabase. Nucleic Acids Research
5. https://www.ncbi.nlm.nih.gov
6. Q. Song, J. Ni and G. Wang. A Fast Clustering-Based Feature Subset Selection Algorithm for
High-Dimensional Data. IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 1, pp. 1-14,
Jan. 2013.

�6

https://www.ncbi.nlm.nih.gov

