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Introduction
We have barely scratched the surface when it comes to microbial diversity. For every 
microorganism we can culture and study in lab, there exist at least another 50 in the 
environment that are labelled “uncultivable”. Although most of these uncultivable strains resist 
growing under laboratory conditions, recent advances in DNA sequencing has given us access 
to their genome. One of the main questions that bioinformatics in the field of microbiology is 
trying to answer is the following: how can we infer function from genomic information without 
access to experimental validation?[1] This project focuses on the prediction of microbial 
growth rate (how fast can a microorganism divide) from genomic information. More 
specifically, counts of specific genomic features encoding microbial functions are extracted from 
annotated microbial genomes for which the incubation time in known. These features are then 
used as input variables for thee different classifiers (softmax classification, SVM and random 
forest) whose role is to find the most probable label among 6 classes (representing different 
incubation times).

Previous work
Literature review did not reveal many example of using machine learning tools to predict 
physiological characteristics at the level of an microorganism from genomic features. Lauro et 
al. used self-organizing map to cluster microorganisms based on genomic features and relate 
the cluster to types of metabolism.[2] Roller et al. showed that the number of 16S rRNA operon 
correlates with growth rate and used it for supervised regression to predict bacterial 
reproductive strategy. Their results, that growth rate use be dictated by metabolic functions, are 
the basis for this project. [3]

Datasets & Feature selection
The growth rate of a microorganism describes how long it takes 
for a cell to divide. When a new organism is isolated, 
microbiologists report growth rates in various ways, which make 
direct comparisons difficult, if they even measure such a 
physiological trait at all. Since mining scientific literature for 
growth rates values could be a machine learning project on its 
own that I did not wish to tackle, I decided to use incubation 
time as a proxy for growth rate. Incubation times are reported 
by strain collections and represent how long approximately one 
has to wait to observe full growth of a microbe. The BacDive 
database [4] contains the incubation times of 2312 
microorganisms in 6 different bins of time: 1-2 days, 2-3 days, 
3-7 days, 8-14 days, 10-14 days and > 14 days.  Out of these 
2312 organisms, 783 have a complete genome (or ordered 
scaffold genome assembly) available on NCBI [5] but only 596 
of these genomes have been properly annotated. Therefore, 
my dataset is composed of 596 genomes and their 
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Fig. 1: histogram of the labels in the dataset



associated incubation time. Figure 1 shows the histogram of the labels of my 596 examples. 
Classes are very unbalanced, with an over representation of class 1-2 and 10-14 days.
Given the hypothesis that incubation time is dictated by metabolic capabilities and functions, I 
focused on extracting metabolically-relevant features from the genomes: counts of proteins 
belonging to each pFam families, length of the genome and number of 16S rRNA operons. The 
Pfam families are clusters of  homolog proteins sharing a similar function. Extraction pFam 
counts yielded a total of 14618 features, which was too large a number of features when I only 
had access to 596 genomes. Keeping only Pfam features that appear in at least 3 genomes 
lowered the total number of features to 7549.
Proteins from more than one pFam cluster can be responsible for the same metabolic function, 
making my dataset highly redundant. In order to further decrease the number of feature, I used 
a feature selection algorithm called Fast Correlation-Based Filter (fcbf) [6]. This algorithm uses 
symmetrical uncertainty (SU) of two variables as a measure of their correlation. Given two 
variables X and Y, SU is defined as two times the ratio of information gain of X given Y, over the 
sum of their entropy. It first computes the SU between each variable and the label over the 
dataset. Keeping only features whose SU with respect to the labels are above a threshold d, the 
algorithm then consider a pair of features and calculates their SU with respect to each other. If 
the SU between these two features is higher than the SU between either of them and the label 
(meaning they are more correlated to each other than to the label), the feature with the lowest 
SU with respect to the label is removed from the dataset. The algorithm loops over pairs of 
features until all remaining features have a higher SU with respect to the label than to each 
other. Using a threshold d of 0 (which means keeping all non redundant features that correlates 
with the labels), the Fast Correlation-Based Filter selected 120 features. 
Classifier building and selection were therefore carried out on two datasets of 596 
examples each: the full dataset contained 7549 features and the filtered “fcbf 
dataset“contained 120 features. Both datasets were scaled (s.d. 1), centered (mean 0) 
and BoxCox transformed to correct for skewness for downstream applications. The 
datasets were divided between training set (537 examples, 90%) and a test set (59 
examples, 10%).

Methods
I built and compared 3 different classifiers: softmax classification with L1-regularization, one 
vs. one SVM with RBF kernel, and random forest. 
Softmax classification:
In softmax regression, the hypothesis (for a 
problem with K classes) takes the following form:

And the likelihood function to maximize is:
There is no close form for the maximum 
likelihood estimates and I used batch gradient descent to find them. Since I had a large number 
of features, I also tried adding a L1 regularization term to the likelihood function such that the 
function to maximize becomes:               
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The L1 regularization term brings down to zero the weights of unimportant variables, thereby 
effectively selecting features of importance. The model was fitted to both the full and the filtered 
training set and the best value for C for each dataset was selected via 10-fold cross-validation 
one the training set. Finally, the models were evaluated on the test set.
SVM classification:
SVMs are linear classifiers that use the hinge loss. They enable the use of kernels to separate 
data in a high-dimensional space that is not necessarily linearly separable in its own space. 
Using the RBF kernel, the loss function to minimize is:

with the matrix    being defined as     and  
.

The 2 model hyperparameters to optimize are therefore a n d        . 
SVMs are inherently 2-classes classifiers. In order to use them for J-class problem, one 
can either train J one vs. all SVM or J(J-1)  one vs. one SVMs. Since my classes were 
extremely unbalanced, I decided to use one vs. one SVMs as it would decrease the impact of 
having very large and very small classes. Furthermore, I weighted each example depending on 
their label: examples from overrepresented classes had a small weight whereas examples from 
underrepresented classes had a large one (weights: “1-2" = 0.5, “2-3" = 1, “3-7" = 1.2, “8-14" = 
3.4, “10-14" = 0.7, ">14" = 5.7). As for softmax regression, the model was fitted using both the 
full and the filtered dataset.  The best values for lambda and gamma were selected with 10-fold 
cross-validation on the training set and the models with the best parameters were retrained on 
the full data-set before being evaluated on the test set.
Random forest
Random forest classifiers build a collection of ntree decision trees, each tree being computed 
over a subset of nex samples, sampled with replacement from the training set. For each tree, at 
each decision split, a random subset of mtry features is selected and the decision split only 
decided over this subset. At each split, the best feature and decision threshold to split upon is 
the feature that minimizes the Gini index. 
The Gini index IG is measure how often an example would be mislabeled 
under a certain probability (with fi = p(y = i)).
I trained random forest classifiers on both the full and filtered training set 
and tried to optimize the number mtry of features selected at each split. I used the 
randomForest package in R to fit random forest models.

Because the classes in my dataset were very unbalanced, accuracy was not a good measure of 
learning. Instead, I used a definition of precision and recall generalized to multi-class to optimize 
the hyperparameters:
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Results
Softmax regression
The softmax regression model was fitted using batch 
gradient descent with batches of 100 examples for 100 
iteration with a learning parameter of 0.05. Better precision 
and recall were obtained with the filtered dataset, 
indicating probably overfitting of the model to unimportant 
features in the full dataset.
The L1 regularization hyper parameter was optimized 
using 10-fold cross-validation (CV) on the training set. 
Mean precision and recall of the CV are presented in figure 
2. Best performances were achieved with a L1 parameter of 
0.6 and  evaluation on the filtered test set showed a 
precision of 0.43 and a recall of 0.44.

SVM

A first attempt at implementing one vs. all SVMs for this classification problem did not yield any 
useful result because of the imbalance of classes. Therefore, a one vs. one SVM classification 
approach was employed. All model fitting were carried out using batch gradient descent 
(batches of 100 examples, annealed learning rate of 1/sqrt(t) for 40*m iteration). I first tested the 
influence of weights on the model using gamma = 1/num features, and cost = 1 (fig. 3). Using 
weights improved precision and recall by 6-10% on both the filtered and full dataset. The best 
cost value for the full dataset was 100 and 1200 for the filtered dataset. Optimization of RBF 
gamma yielded the following values: 0.035 for the filtered dataset, and 0.00013 for the full 
dataset. Evaluation on the test set showed that the best model had a precision and recall of 
0.48 and 0.48 for the full dataset, and of 0.52 and  0.46 for the filtered dataset.
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Fig. 2: Softmax classification
10-fold CV of the hyper parameter

over the training set
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Random Forest
I trained random forest models with 2500 trees and variable 
number of features subsampled at each split. Optimization of 
the number of features for split decision yielded different 
results for the full and filtered dataset:  20 features worked 
best for the filtered dataset, whereas 5 features were better 
for the full dataset. The best random forest model yielded a 
precision of 0.48 and recall of 0.47 with the filtered dataset 
(fig. 4).

Model comparison and PCA
All three models performed better with the filtered 
dataset but did not have vastly different 
classification powers, as the comparison of 
confusion matrix shows in figure X. All classifiers 
were able to classify fast and slow growing 
organisms (class 0: 1-2 and  class 4: 10-14 days) 
relatively well but were not able to resolve 
medium growth-rate (classes 2, 3 ) or extremely 
slow organisms (class 5). 
PCA of the dataset shows a clear chasm between 
slow an fast growing organisms (class 0 and class 
4). However, Fast growing organisms overlap with 
medium-fast organisms on the plot, which might 
explain the difficulty for the classifiers to properly 
classify them.

Conclusion
This project focused on predicting microbial 
incubation times from genomic features. All 
classifiers trained yielded precision and recall 
values in the 0.4 - 0.5 range, indicating that no 
model was vastly superior. The classifiers were 
able to classify well fast and slow growing 
organisms but not the organisms whose 
incubation are in between (or extremely long). 
This lack of predictive power can be explained by 
the imbalance of classes, the small number of 
examples compared the number of features or, 
more likely, a lack of knowledge of the optimum 
growth condition for the organisms. Under optimal 
growth condition, it is possible that the organisms 
in class 2 and 3 would actually grow faster and 
would fall in class 0.

�5

−25

0

25

50

75

−40 0 40 80
PC1

PC
2

Incubation time (days): 1−2
2−3

3−7
8−14

10−14
>14

0.35

0.40

0.45

0.3 0.4
precision

re
ca

ll

Number of variable
sampled

1
5
10
20

Feature selection
none
fcbf

Fig. 4: Random forest model - Precision and 
recall during optimization of the number of 

subsampled features

A

B

Fig. 5: Confusion matrices from the best models (A), 
plot of the first two components of PCA over the full 

dataset (B)



References:
1. Libbrecht MW, Noble WS. 2015. Machine learning applications in genetics and genomics. Nature 
Reviews Genetics. 16(6):321–32
2. Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, et al. 2009. The genomic basis of 
trophic strategy in marine bacteria. Proc. Natl. Acad. Sci. U.S.A. 106(37):15527–33
3. Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate 
bacterial reproductive strategies. Nature Microbiology. 1:16160EP
4. Söhngen C, Bunk B, Podstawka A, Gleim D. 2013. BacDive—the Bacterial Diversity 
Metadatabase. Nucleic Acids Research
5. https://www.ncbi.nlm.nih.gov
6. Q. Song, J. Ni and G. Wang. A Fast Clustering-Based Feature Subset Selection Algorithm for 
High-Dimensional Data. IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 1, pp. 1-14, 
Jan. 2013.

�6

https://www.ncbi.nlm.nih.gov

